Received: April 26, 1977

SUR LES COMPOSES FLUORES DU TELLURE (IV) : ETUDE STRUCTURALE DE CSTEF

J.C. JUMAS, M. MAURIN et E. PHILIPPOT

Laboratoire de Chimie Minérale C, E.R.A. 314, Université des Sciences et Techniques du Languedoc, Place E. Bataillon, 34060 Montpellier (France).

SUMMARY

CsTeF₅ was synthetized in hydrofluorhydric solution by action of CsF and TeO₂. The structure was solved by means of three dimensional Patterson synthesis (final R_w value = 0,033). This structure contains isolated TeF₅ groups which are distorted square pyramids (Cs symmetry). The apical Te-F bond distance and the basal Te-F bond distances are 1,81 , 1,91 and 1,95 Å respectively.

RESUME

 $CsTeF_5$ a été préparé en milieu fluorhydrique par action de CsF sur TeO₂. La structure a été résolue à l'aide d'une synthèse de Patterson tridimensionnelle, le résidu final R est de 0,033. Cette structure met en évidence des groupements isolés TeF₅ qui sont des pyramides à base carrée déformées de symétrie Cs où les liaisons Te-F axiale et Te-F équatoriales sont respectivement de 1,81 , 1,91 et 1,95 Å.

INTRODUCTION

Les divers halogénures de tellure (IV) on fait l'objet de plusieurs études structurales parmi lesquelles il faut citer les études structurales de K₂TeI₆ [1] et TeI₄ [2]; de K₂TeBr₆ [3], NH₄TeBr₆ [4], Cs₂TeBr₆ [5] (CH₃CH₂CHNH₃Co₂H)₂TeBr₆ [6] et (C₄H₈N₂O₂)₂H₂TeBr₆ [7]; de (NH₄)₂TeCl₆ [8] Rb₂TeCl₆ [9], PTeCl₉ [10] et TeCl₄ [11]. Dans tous ces composés l'environnement du tellure (IV) par les atomes d'iode, de brome ou de chlore est de symétrie octaèdrique. Les octaèdres TeX₆ sont réguliers pour les composés M_2^{I} TeX₆ (avec M = alcalins ou NH₄) et présentent dans les autres cas des déformations provoquées soit par le type d'enchaînement qu'ils adoptent, soit par la nature des cations présents. Cette symétrie octaèdrique des groupements TeX_6 exclue une activité stéréochimique notable de la paire libre E.

Il n'en est pas de même dans la série des fluorures où les structures de TeF₄ [12] et KTeF₅ [13] sont décrites à partir d'un environnement différent pour le tellure, constitué par 5 atomes de fluor qui forment autour de lui une pyramide à base carrée. Ces groupements TeF₅ déformés par la présence de la paire libre 5 s² permettent en tenant compte d'une direction de liaison Te-paire libre E de décrire cet environnement comme étant de type octaèdrique déformé TeF₅E où la paire libre E joue un rôle stéréochimique significatif.

Afin de mieux préciser les caractéristiques valentielles de ces groupements nous avons préparé les composés MTeF₅ (M = Rb, Cs, Tl et NH₄) [14] et nous présentons ici les résultats de l'étude structurale de CsTeF₅.

PARTIE EXPERIMENTALE

 $CsTeF_5$ se prépare par dissolution des quantités stoechiométriques de CsF et TeO₂ dans HF [14]. L'évaporation lente de telles solutions diluées permet d'obtenir des tablettes monocristallines incolores.

Une étude préliminaire en chambres de Weissenberg et de précession de Buerger a permis [14] de déterminer les constantes cristallographiques que nous rappelons dans le tableau 1.

TABLEAU 1

Données cristallographiques relatives à CsTeFs

Maille orthorhombique avec :	$a = 10,221(3) \stackrel{o}{A}$
	b = 6,651(3)
	c = 8,330(3)
	$V = 566 Å^3$
	Z = 4
Masse molaire :	355,5
Masse volumique en g/cm ³ à 20°C ;	$^{\rho}calc. = 4,17$ $^{\rho}mes. = 4,12$

220

```
Groupe d'espace :

Pnma ou Pn2<sub>1</sub>a

Positions équivalentes générales : \pm (x, y, z); \pm (-x, \frac{1}{2} + y, -z)

\pm (\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z);

\pm (\frac{1}{2} - x, -y, \frac{1}{2} + z);

Forme des cristaux :

Coefficient d'absorption linéaire : \mu = 118.9 cm<sup>-1</sup> (\lambda = 0.71069 Å, MoK\alpha)
```

Le cristal sélectionné pour la détermination structurale est un petit parallélèpipède tronqué de volume 0,61 x 10^{-2} mm³.

Les mesures ont été effectuées à l'aide d'un diffractomètre automatique à quatre cerlces NONIUS CAD 4 pour la radiation K_{α} du molybdène en utilisant la technique cristal oscillant-compteur fixe (balayage en ω). Nous avons mesuré ainsi 1004 réflexions pour des valeurs de sin $\theta/\lambda \leq$ 0,70 parmi lesquelles 568 ayant un $\sigma(I)/(I) \leq$ 0,30 ont été conservées.

Les facteurs de structures observés, calculés à partir de ces intensités ont été corrigés des effets de l'absorption. Le facteur de transmission varie de 0,17 à 0,26.

DETERMINATION ET AFFINEMENT DE LA STRUCTURE

La structure a été résolue par interprétation d'une synthèse de Patterson tridimensionnelle qui a permis de localiser les atomes lourds de Cs et de Te dans le groupe d'espace centrosymétrique Pnma.

Une série différence de Fourier tridimensionnelle utilisant la contribution des atomes Cs et Te dont les coordonnées atomiques ont été préalablement affinées nous a permis de localiser les atomes de fluor.

L'affinement de la structure tenant compte de l'agitation thermique isotrope des atomes et d'un coefficient d'extinction secondaire isotrope g effectué avec les 568 facteurs de structure observés pondérés en utilisant les déviations standard de nos mesures conduit à une valeur de R_w de 0,048 (avec g = 0,22(2) x 10⁻⁴).

Dans un dernier stade nous avons poursuivi cet affinement en tenant compte de l'agitation thermique anisotrope des atomes. Après deux cycles d'affinement le coefficient de reliabilité pondéré R_w converge vers la valeur de 0,033 (R non pondéré = 0,046 et g = 0,22(1) x 10⁻⁴). Le tableau II rassemble les positions finales et les facteurs de température isotrope et anisotrope des atomes. Pour le calcul des facteurs de structure nous avons utilisé les facteurs de diffusion atomique proposés par Doyle et Turner [15].

La liste des facteurs de structure observés et calculés est disponible au Laboratoire de Chimie Minérale C. Tous ces calculs ont été effectués sur un ordinateur IBM 360/65 en utilisant un ensemble de programme adapté au laboratoire [16].

TABLEAU 2

Paramètres finals pour CsTeF₅. Les écarts-types relatifs aux derniers chiffres significatifs sont donnés entre parenthèses.

Atome	Notation de Wyckoff	x/a	y/b	z/c	B(Å ²)
Cs	4 c	0,1682(2)	0,25	0,6358(4)	2,57(7)
Те	4 c	0,0702(2)	0,25	0,1399(3)	1,90(6)
F ₁	8 d	0,138 (1)	0,049(1)	-0,010 (2)	3,2 (3)
F_2	8 d	0,070 (1)	0,046(2)	0,302 (1)	3,5 (3)
F ₃	4 c	0,242 (2)	0,25	0,192 (2)	2,7 (4)

Le facteur de température anisotrope est de la forme :

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs	0,040(2)	0,031(1)	0,033(1)	0,0	0,007(1)	0,0
Te	0,033(2)	0,021(1)	0,022(1)	0,0	-0,002(1)	0,0
F ₁	0,048(5)	0,040(4)	0,046(7)	0,009(7)	0,004(4)	-0,017(7)
F_2	0,058(5)	0,056(7)	0,042(7)	0,010(7)	0,010(7)	-0,002(5)
F ₃	0,04 (1)	0,018(7)	0,06 (1)	0,0	-0,011(7)	0,0

 $\exp \left[-2 \pi^{2} \left(h^{2} a^{*2} U_{11}^{+} k^{2} b^{*2} U_{22}^{+}\right)^{2} c^{*2} U_{33}^{+} h k a^{*} b^{*} U_{12}^{+} h l a^{*} c^{*} U_{13}^{+} k l b^{*} c^{*} U_{23}^{-}\right)\right]$

DESCRIPTION ET DISCUSSION DE LA STRUCTURE

La structure de CsTeF₅, schématisée en projection sur les figures 1 et 2, met en évidence un arrangement d'anions TeF₅ reliés entre eux par l'intermédiaire des polyèdres de coordination des cations Cs⁺.

Fig. 1. Projection de la structure sur le plan (a, c).

Fig. 2. Projection de la structure sur le plan (b, c).

Les valeurs caractéristiques des angles et distances interatomiques dans cette structure sont rassemblées dans le tableau 3.

TABLEAU 3

Distances (Å) et angles (°) dans $CsTeF_5$. (Ecarts-types entre parenthèses).

Te - F ₃ 2 Te - F ₂ 2 Te - F ₁	1,81(2) 1,91(1) 1,95(1)	$F_{1} - Te - F_{1} = 86,4(7)$ $2 F_{1} - Te - F_{2} = 88,1(5)$ $F_{2} - Te - F_{2} = 90,3(7)$ $2 F_{1} - Te - F_{2} = 159,5(5)$ $2 F_{1} - Te - F_{3} = 79,3(5)$ $2 F_{2} - Te - F_{3} = 80,3(5)$
2 Cs - F_1 2 Cs - F_2 2 Cs - F_2 2 Cs - F_1 2 Cs - F_3 2 Cs - F_3 2 Cs - F_2	3,07(1) 3,17(1) 3,25(1) 3,26(2) 3,48(1) 3,60(1)	$F_{1} - F_{1} 2,67(1)$ $F_{1} - F_{2} 2,69(2)$ $F_{2} - F_{2} 2,71(3)$ $F_{2} - F_{1} 2,69(2)$ $2 F_{3} - F_{1} 2,40(2)$ $2 F_{3} - F_{2} 2,40(2)$

Les atomes de tellure sont environnés par 5 atomes de fluor qui forment une pyramide dont la base est un trapèze pseudo-carré (angles F_1 - F_2 - F_2 de 89,6° et F_2 - F_1 - F_1 de 90,4° et longueurs F_1 - F_1 de 2,67 Å, F_1 - F_2 de 2,69 Å et F_2 - F_2 de 2,71 Å). Ce groupement a été schématisé sur la figure 3. Les 4 atomes de fluor F_1 , F_1 , F_2 et F_2 formant cette base sont rigoureusement coplanaires (équation d'un de ces plans : 0,97 x + 0,26 y = 1,34) et l'atome de tellure, situé tout comme l'atome de fluor F_3 dans le plan de symétrie à la côte y = 0,25, est déplacé de 0,347 Å au dessous du plan de base de cette pyramide. Ce motif Te F_5 est donc de symétrie Cs.

Les liaisons équatoriales Te - F sont plus longues que la liaison axiale Te - F_3 (1,91 Å, 1,95 Å et 1,81 Å respectivement) et les angles F-Te-F sont tous inférieurs à 90° et 180°. Ces déformations s'expliquent par la présence de la paire électronique libre E et sont en accord avec la théorie des répulsions des paires électroniques des couches de valence [17].

Fig. 3. Groupement TeF₅.

Les distances Te-F sont en bon accord avec celles rencontrées dans les composés fluorés ou oxyfluorés du tellure (IV) comme le montrent les valeurs rassemblées dans le tableau 4.

TABLEAU 4

Longueurs moyennes (\mathring{A}) des liaisons Te-F dans les fluorotellurites ou oxofluorotellurites.

Phase	Référence	Te - F _{ax.}	Te - F _{eq.}
ТеFд	[12]	1,80	2,03
KteF ₅	[13]	1,86	1,95
H ₂ Te ₂ 0 ₃ F ₄	[18]	_	1,97
CsTeF ₅	ce travail	1,81	1,93

L'environnement du tellure dans cette structure est donc de type octaèdrique déformé TeF_5E avec la paire libre E dirigée le long de l'axe de l'octaèdre (figure 3).

Des arrangements analogues XF₅E ont été rencontrés pour des composés isoélectroniques tels Na₂SbF₅ [19], K₂SbF₅ [13, 20], (NH₄)₂SbF₅ [21], KTeF₅ [13], IF₅ [22], XeF₅⁺ [23] et TeF₄ [12] et le tableau 5 rassemble les valeurs moyennes des longueurs X-F et des angles F-X-F qui permettent de les comparer.

TABLEAU 5

		SbF ₅ ²⁻			TeF	-	IF	XeF5 ⁺
	Na ₂ SbF ₅ [18]	K ₂ SbF ₅ [13]	(NH ₄) ₂ SbF ₅ [20]	^{TeF} 4 [12]	KTeF [13]	CsTeF (ce tra vail)	5 [22]	[23]
X-F _{ax} (Å)	2,01	2,00	1,92	1,80	1,86	1,81	1,82	1,81
X-F _{eq.} (Å)	2,08	2,04	2,08	2,03	1,95	1,93	1,87	1,88
F _{ax} - F _{eq}	2,56		2,55	2,52	2,42	2,40	2,40	
F_{eq} - F_{eq}	2,87		2,89	2,85	2,71	2,69	2,62	
$F_{ax} - X - F_{eq}$	77,7	83,0	79,4	81,8	78,9	79,8	80,9	80,0
$F_{eq.} - X - F_{eq.}$	87,2		88,0	88,8	87,8	88,2	88,6	

Distances moyennes (Å) et angles moyens (°) dans les ions ou molécules XF_5E (X = Sb, Te, I, Xe).

Dans la structure de $CsTeF_5$ les atomes de césium ont un environnement constitué par 10 atomes de fluor (si on se limite à des longueurs Cs-F inférieures à 3,60 Å) qui forment un polyèdre complexe. Dans ces polyèdres les longueurs Cs-F sont voisines ou supérieures à la somme des rayons ioniques qui est de 3,11 Å selon R.D. Shannon [24].

SPECTROSCOPIE INFRAROUGE ET RAMAN

L'étude infrarouge et Raman des groupements TeF_5^- a été effectuée par Greenwood, Sarma et Straughan [25] puis reprise et complétée par Christe, Curtis, Schack et Pilipovich [26] dans une étude générale sur les motifs XF_5^- (X = S, Se et Te). Le dénombrement des vibrations observées et les concordances i.r et Raman ont conduit ces différents auteurs à prédire pour le groupement TeF_5^- dans CsTeF $_5$ la symétrie C $_{4v}$. Ceci constitue une contradiction avec la symétrie C $_{5}$ mise en évidence par nôtre étude structurale et nous a conduit à reprendre cette étude entre 200 et 700 cm⁻¹ (*).

Les spectres i.r et Raman sont représentés sur la figure 4. Ces spectres peuvent être divisés arbitrairement en 3 parties : - la région de la vibration de valence Te-F_{axial} entre 600 et 700 cm⁻¹,

226

- la région des vibrations de valence Te- $F_{equatorial}$ entre 400 et 600 cm⁻¹,

- la région des vibrations de déformation au dessous de 350 ${\rm cm}^{-1}$.

Fig. 4. Spectres infrarouge et Raman de CsTeF₅.

Pour les vibrations de valence Te-F_{équatorial} les raies les plus intenses en Raman à 488 et 520 cm⁻¹ sont attribuées aux vibrations les plus symétriques $v(\text{TeF}_4)$ en phase et hors de phase auxquelles correspondent les bandes à 479 et 535 cm⁻¹ en i.r. Les deux vibrations de valence dégénérées non attribuées sont alors observées à 455 et 500 cm⁻¹ en Raman et 458 et 505 cm⁻¹ en i.r.

Les vibrations de déformation peuvent être divisées en deux familles : celle mettant en jeu les 4 liaisons Te-F dans le plan équatorial auxquelles on attribue la bande large à 285 cm⁻¹ et celle impliquant la déformation de la liaison Te-F axiale par rapport aux 4 liaisons Te-F équatoriales à 338 cm⁻¹ à laquelle correspond la raie à 345 cm⁻¹ en Raman.

Pour la vibration de valence Te- F_{axial} on observe deux bandes à 622 et 650 cm⁻¹ auxquelles correspondent deux raies à 622 et 657 cm⁻¹ alors

qu'une seule vibration est attendue. Ce dédoublement peut être expliqué soit par un couplage dans le cristal par rapport au centre de symétrie, soit par l'existence de modes complexes. Dans la première hypothèse les intensités i.r et Raman devraient être inversées [27] ce qui n'est pas le cas (figure 4). Le mode observé à 650 cm⁻¹ doit être alors attribué à la vibration complexe (Te-F₃, Te-F₁, Te-F₁) et celui à 622 cm⁻¹ à la vibration (Te-F₃, Te-F₂, Te-F₂). Ce phénomène a déjà été observé pour SbF₅²⁻ dans Na₂SbF₅ [28].

La bande fine \tilde{a} 636 cm⁻¹ (figure 4) est vraisemblablement causée par un effet de cristal.

Dans l'ensemble on ne peut donc interpréter complètement ces spectres à l'aide du concept de vibration de groupe [29]. Cependant en faisant l'analyse des vibrations permises en infrarouge et Raman selon le concept du groupe de site (ici C_s) et du groupe facteur (ici D_{2h}) avec 4 motifs TeF₅ par maille on rend compte de 20 vibrations actives en i.r et de 24 en Raman. Nous en décomptons au moins 11 dans la partie du spectre i.r que nous avons explorée et 13 dans la partie correspondante du spectre Raman (figure 4). Compte tenu des parties du spectres i.r plus lointaines qui n'ont pu être explorées et du fait que certaines vibrations permises sont de trop faible intensité pour être visibles on peut alors considérer qu'il existe un bon accord entre la théorie et les résultats de l'expérience.

Nous avons rassemblé ces résultats comparés à ceux des auteurs précédemment cités dans le tableau 6.

Leur ensemble confirme bien la symétrie C_s du groupement TeF₅ et contredit de manière formelle les propositions faites par Greenwood et coll. [25] ainsi que Christe et coll. [26] sur l'existence d'une symétrie C_{4v} pour ce groupement dans CsTeF₅.

Le fort éclatement quadrupolaire observé pour le spectre Mössbauer du tellure IV dans $CsTeF_5$ selon Gibb, Greatrex, Greenwood et Sarma [30] peut très bien s'expliquer par la symétrie C_s de TeF₅ qui représente une forte déformation de l'édifice TeF₅E par rapport à la symétrie octaèdrique des autres groupements halogénés TeX₆.

* Nous tenons à remercier Monsieur le Professeur G. MASCHERPA qui nous a permis d'obtenir les spectres i.r et Raman à l'aide des appareils PERKIN-ELMER 227 et PHO CODERG.

TABLEAU 6

Spectres infrarouge et Raman de CsTeF₅.

	Réf. [[24]		Ce travail	
i.r.	Raman	Vibrations	i.r.	Raman Vibrations	
			650	657 ν(Te-F ₃ ,Te-F ₁ ,Te-F ₁)
618	611	v(Te-F _{ax})	622	622 v(Te-F ₃ ,Te-F ₂ ,Te-F ₂)
			535	520 v _s (TeF ₄) en phase	
[466 large]	504	ν _s (TeF ₄)en phase	505	500 vas(TeF ₄)	
[4	72 forte	$]v_{s}(TeF_{4})$ hors de	479	488 v_{s} (TeF ₄) hors de	
[466 large][4	72 forte] v _{as} (TeF ₄)	458	455 $v_{as}(TeF_4)$	
336	338	δ(F _{ax} -Te-F _{eq})	338	345 δ(F _{ax} -Te-F _{eq})	
		un 04	392		
283	282	$\delta_{s}(\text{TeF}_{4})[\text{ambrelle}]$	285	285 (Te-F) dans le	
		5	275	plan et hors du pla	'n
•••	231	δ _s (TeF ₄) dans le			
164	•••	δ _{as} (TeF ₄) dans			
		ie pian			

- 1 Shigeru Syoyama, Kenji Osaki et Shigenori Kusanali, Nucl. Chem. Letters, 8 (1972) 181.
- 2 V. Paulat et B. Krebs, Angew. Chem., <u>88</u> (1976) 28.
- 3 I.D. Brown, Canadian Journal of Chemistry, 42 (1964) 2758.
- 4 A.K. Das et I.D. Brown, Canadian Journal of Chemistry, 47 (1969) 4288.
- 5 A.K. Das et I.D. Brown, Canadian Journal of Chemistry, 44 (1965) 939.
- 6 F. Dahan et O. Lefebvre Soubeyran, Acta Cryst., B32 (1976) 2859.
- 7 F. Dahan et O. Lefebvre Soubeyran, Acta Cryst., B32 (1976) 2863.
- 8 A.C. Hazell, Acta Chem. Scand., <u>20</u> (1966) 165.

9	M. Webster et P.H. Collins, J. Chem. Soc. Dalton, (1973) 588.
10	P.H. Collins et M. Webster, Acta Cryst., <u>B28</u> (1972) 1260.
11	B. Buss et B. Krebs, Inorg. Chem., <u>10</u> (1971) 2795.
12	A.J. Edwards et F.I. Hewaidy, Inorg. Phys. Theor., (1968) 2977.
13	S.H. Mastin, R.R. Ryan et L.B. Asprey, Inorg. Chem., <u>9</u> (1970) 2100.
14	J.C. Jumas, F. Vermot-Gaud-Daniel et E. Philippot, C.R. Acad. Sci.
	Paris, <u>282</u> (1976) 843.
15	P.A. Doyle et P.S. Turner, Acta Cryst., <u>A24</u> (1968) 390.
16	Programmes adaptés au laboratoire, originaux : DATAP ${\rm H}$ pour corrections
	de L.P. et d'absorption (P. Coppens et W.C. Hamilton) : DRF pour les
	synthèses de Fourier tridimensionnelles (Zalkin) : LINEX pour les af-
	finements par la méthode des moindres carrés à matrice complète tenant
	compte de l'extinction secondaire (P. Coppens et P. Becker) : DISTAN
	pour le calcul des distances et angles interatomiques (Zalkin).
17	R.J. Gillespie et R. Nyholm, Quart. Rev. Chem. Soc., <u>11</u> (1957) 339.
18	J.C. Jumas, M. Maurin et E. Philippot, Journal of Fluorine Chemistry,
	<u>8</u> (1976) 329.
19	R. Fourcade, G. Mascherpa, E. Philippot et M. Maurin, Rev. Chim. Minér.,
	<u>11</u> (1974) 481.
20	A. Byström et K.A. Wilhelmi, Arkiv. Kemi., <u>3</u> (1951) 461.
21	R.R. Ryan et D.T. Croner, Inorg. Chem., <u>11</u> (1972) 2322.
22	G.R. Jones, R.D. Durbank et N. Bartlett, Inorg. Chem., <u>9</u> (1970) 2264.
23	N. Bartlett, F. Einstein, D.F. Stewart et J. Trotter, J. Chem. Soc. (A)
~ •	(1967) 1190.
24	R.D. Shannon, Acta Cryst., <u>A32</u> (1976) 751.
25	N.N. Greenwood, A.C. Sarma et B.P. Straughan, J. Chem. Soc. A, (1966)
<u>.</u>	
26	K.O. Christe, E.C. Curtis, C.J. Schack et D. Pilipovich, Inorg. Chem.,
<u></u>	<u>11</u> (1972) 1679.
21	B. Ducourant, J.L. Jumas, R. Fourcade et G. Mascherpa, Rev. Chim. Miner.
20	(a parallere). D. Fournorde, Thèse de Destaurt às Coismans Dhusians, Musturillia
2.0	France 1075
20	M T Formal Thèse Rondonus 1062
20	T C Gibb B Creatrox N N Creatword at A C Savera 1 Cham See A
50	(1970) 212
	(13/0) LiL.